Skip to main content

Archives: All Ads

All Ads

User Empowerment for SmartGrid Flexibility in local power grids

The energy transition faces a serious challenge caused by a decentralized electricity supply. From 2025, new Swiss legislation will allow energy to be traded and exchanged within certain neighbourhoods or areas via the public grid. This must be operated in a as balanced manner as possible to avoid the collapse of the electricity grid.

In order to do this, demand must be exactly the same at all times for a given level of production. This requires the use of existing flexibility in decentralized resources, as the feed-in of solar power in particular is subject to stochastic (weather) and periodic (season, day/night) fluctuations.

Together with a technology provider, we are developing solutions to control electricity grid stability by means of grid load, prices and other psychological incentives. One solution is forecasting distribution-grid problems, i.e. grid congestions, transformer load etc..

As the aim is to implement the solution real-time to give feed-back, we require real-time data from a distribution service provider or a local electricity prosumer community (LEG). The data should include real-time energy consumption, real-time energy production and grid status.

This will allow us to further develop the solution to enable peak-shifting using flexible loads.

We from HSLU and CEEX are looking for:

  • Companies/organizations, who can provide energy consumption data
  • Companies/organizations, who implement and/or contribute to an implementation of our proposed solution

—-

If you are interested and want to contribute with your organization, send us the feedback form attached to databooster@data-innovation.org until June 28th, 2024, stating

  • What is the competency that you could bring in?
  • Do you have specific experience that might be relevant in the project context?
  • What is the contribution to the project goals that you want to bring in?

The next steps will be:

  • Based on your proposed contributions, the call owner (Simone Griesser, HSLU Institute of Communication and Marketing IKM &Christian Dollfus CEEX – Clean Energy Exchange info@ceex.ch) will decide about the partners to continue on shaping the idea.
  • Afterward: an additional workshop or/and definition of the concrete implementation plan.

The rules of the game: Decisions on whom to invite for the first meeting, and whom to select for the workshops and final innovation team will be made by the company, based on the provided information.

The goal is to set up an optimal innovation team for reaching the goals, not to create a team with as many partners as possible.

From ethical principles to practical implementation: Exploring the challenges of consulting in the implementation of responsible AI (RAI)

Idea:

We aim to foster the adoption of AI by Swiss organizations through a two-phase project:

–       Phase 1: In the Swiss economy landscape, we aim to clarify the challenges organizations – and their consulting partners – face in implementing responsible AI (RAI) such as how to measure the ethical risks of an AI tool or attribute responsibility for the negative effects of third-party AI tools that are used in a company.

–       Phase 2: We aim to co-develop, in partnership with consultancies and or client organizations, a set of tools addressing the needs of Swiss companies and tailored to their specificities (e.g., sector, industry).

Partners needed:

From industry and the public. Specifically, we are looking for organizations to work with us in shaping a workshop entitled “Consulting in RAI: how to narrow the RAI implementation gap”. (Phase 1)

Background:

The adoption of AI entails ethical issues, such as fairness and transparency, which, in turn, manifest into significant strategic, operational, and compliance risks. These include challenges in justifying decision-making processes, possible consumer backlash, and legal liabilities. These risks are pervasive but often manifest in unexpected ways. Accordingly, organizations struggle to, first, develop tools and practices that can be used to limit the ethical risks of AI and, second, to attribute responsibility for the negative effects brought about by the use of AI. For these reasons, there is growing demand for consulting services in RAI. Yet, when providing RAI services, consultancies face difficulties in translating ethical AI principles into practical recommendations for the specific needs of their client organizations and the specificities of the Swiss business context. Our project will help in addressing these issues.

Detailed project description:

In phase 1, we seek to identify and explore the current RAI needs and challenges that consultancies and client organizations face. We are looking for companies interested in participating with us in the shaping of the workshop “Consulting in RAI: how to narrow the RAI implementation gap”. To fund this event, we aim to apply to the Innovation Booster Databooster – Shaping Workshop. Participants from both consultancies and organizations in need of RAI consulting will have the opportunity to share experiences, talk about their challenges, and draft initial solutions to the most pressing ones. The specific list of workshop topics to be discussed will be refined on the basis of the input of participating organizations, but might include topics such as the impact of AI opacity on decision making, the emergence of new roles (e.g., Chief Ethics Officer), the formation of RAI councils, stakeholder engagement on ethical expectations, and the challenges associated with using externally developed AI tools. The outcome of this phase will be a report on the main results of the workshop, namely the challenges in RAI of the organizations that participated in the workshop and possible directions to address them.

In phase 2, building on the insights and outcomes of the workshop, we will partner with consultancies and/or client organizations to develop a set of tools that can help organisations and consultancies in addressing RAI issues and adapt to the characteristics of the organization. The offering will include, among others, training material to improve staff’s RAI literacy, a toolkit (e.g., checklists, frameworks and best practices) for assessing and managing a company’s ethical risks in RAI, and supporting tools for designing RAI policies. It will be elaborated after the workshop and on the basis of the organizations that will apply with us to Innosuisse.

—–

If you are interested in participating, please reply by May 31, 2024.

If you are interested and want to contribute with your organization, send us the feedback form attached to databooster@data-innovation.org until May 31, 2024, stating

  • What is the competency that you could bring in?
  • Do you have specific experience that might be relevant in the project context?
  • What is the contribution to the project goals that you want to bring in?

The next steps will be:

  • Based on your proposed contributions, the call owner will decide about the partners to continue on shaping the idea.
  • Afterward: an additional workshop or/and definition of the concrete implementation plan.

The rules of the game: Decisions on whom to invite for the first meeting, and whom to select for the workshops and final innovation team will be made by the company, based on the provided information.

The goal is to set up an optimal innovation team for reaching the goals, not to create a team with as many partners as possible.

Operational models to access multi-modal real-world data in the Swiss and European ecosystem to enable machine-learning derived insights in drug development

Partners needed:

From the academy and public.

    • Hospitals, representatives of consortia, and other data owners to explore and develop privacy-preserving solutions as well as collaborative operational models that enable use of their data for developing tomorrow’s therapeutics.
    • Researchers who study and apply concepts for privacy-preserving analyses on real-world patient-level data.

Idea:

We envision the use of multi-modal real-world data and machine-learning derived insights to enable biotech and pharmaceutical companies to develop the right therapeutic for the right patient population. This will enable reduced timelines in preclinical development and lower failure rates in clinical development, which will increase efficiency and lower costs in drug development.

With this call for collaboration, we aim to explore and develop privacy-preserving operational models that enable the use of Swiss and European patient data to inform drug development. This will bring more diversity in data-driven decisions in drug development and benefit patient groups which are currently underrepresented in the US-dominated real-world data landscape.

We have multiple years of experience in the pharmaceuticals industry, leveraging multi-modal real-world patient data to inform decisions in early drug development. Having seen that most of the data being used is exclusively from the US and often originating from the same geographies with a high density of academic research centers, we see a clear need to improve diversity in data sources.

Our company is building a tech-stack that includes the following steps to deliver insights for drug development.

    • Data ingestion: Identification and curation of suitable data from public and proprietary sources.
    • Deep phenotyping: Deriving features from structured clinical and unstructured data (histopathology images, multi-omics, medical imaging etc.) using a blend of machine learning, epidemiological, and biostatistical methods.
    • Outcomes analysis: Identifying patients with unmet medical need and patient groups with expected high drug effect to provide the best indications, patient groups, and molecular targets for the development of novel therapeutics.

We want to embed all the above in a privacy-preserving framework for data access. To this end, we are looking for collaborators to assess the feasibility of using multi-modal real-world patient data in a European privacy framework and to come up with collaboration models that are attractive to data owners.

Objectives of this call:

  • Assess and evaluate different operational models and incentives for integrating Swiss and European data in data-driven decisions for drug development.
  • Assess and discuss different technical models for decentralized analysis, such as federated learning or use of synthetic data.
  • Map out data owners and stakeholders in Switzerland and how they can be included in a framework for data sharing.
  • Build partnerships with data owners.

—–

If you are interested in participating, please reply by May 31, 2024.

If you are interested and want to contribute with your organization, send us the feedback form attached to databooster@data-innovation.org until May 31, 2024, stating

  • What is the competency that you could bring in?
  • Do you have specific experience that might be relevant in the project context?
  • What is the contribution to the project goals that you want to bring in?

The next steps will be:

  • Based on your proposed contributions, the call owner will decide about the partners to continue on shaping the idea.
  • Afterward: an additional workshop or/and definition of the concrete implementation plan.

The rules of the game: Decisions on whom to invite for the first meeting, and whom to select for the workshops and final innovation team will be made by the company, based on the provided information.

The goal is to set up an optimal innovation team for reaching the goals, not to create a team with as many partners as possible.

Integrated data system for healthcare in Switzerland

Challenge:

If hospital facilities have to be closed due to political decisions, there is an urgent need to develop alternative healthcare models for the respective regions. This is the only way to continue to guarantee stable and reliable healthcare for local residents and tourists.

Desired solution:

Our approach focuses on healthcare solutions from the field of patient-centred digital health in combination with operational expertise. By working with local healthcare providers and utilising cutting-edge technology and research, we aim to promote targeted collaboration in healthcare, bridge gaps and build a new foundation of trust within the community. We aim to develop a comprehensive digital platform that seamlessly integrates and analyzes healthcare data. This platform will enhance decision-making and improve patient outcomes, using advanced data analysis techniques and focusing on patient needs, with support from our academic and industry partners.

We are looking for:

As for our expectations from industry members, we are seeking partners with expertise in implementing healthcare technology, who can offer insights into the operational challenges in healthcare settings. We also look for collaboration in developing and testing this data system in real-world environments.

If you are interested in participating, please reply by January 26th, 2024 and send us an email, stating:

  • What is the competency that you could bring in?
  • Do you have specific experience that might be relevant in the project context?
  • What is the contribution to the project goals that you want to bring in?

Please explain your possible contribution as specifically as possible and please use the feedback form.

The rules of the game: Decisions on whom to invite for the first meeting, and whom to select for the next activities and final innovation team will be made by the organisation, based on the provided information. The goal is to set up an optimal innovation team for reaching the goals, not to create a team with as many partners as possible.

Continuous monitoring of thermal solar panels’ efficiency

Context

The proper operation of thermal solar panels (TSP) is an issue as the maintenance (if any, in most of the cases: none) is usually performed once a year. The deterioration of the installation is not apparent to the owner as TSP is only a supporting system. In fact, Domestic Hot Water (DHW) is still available, but the heating energy needed rises because the inflow of (cold) water is not pre-heated by the solar system.

There are above 25’000 villas in Geneva and in Switzerland above 1 million (according to Statistic Office of Swiss Confederation). There is no specific data on villa equipped with TSP but at least 10% should. Laws on energy’s efficiency has already been passed in some cantons. This will further push the installation of such systems.

Objectives

  1. Define the 5 to 7 key parameters and their weighting to calculate the rated efficiency of the TSP installation (orientation, angle, cleanliness, shadows age, glycol quality, etc.) so that it can be compared with actual production. (Producer data are far too optimistic as they are obtained in laboratories).
  2. Put together the necessary low-cost kit to allow continuous data monitoring able to detect deterioration of the TSP’s efficiency. This kit should not cost more than 500 CHF (without installation)
  3. Define the business model to enter into the villa market and define a USP for the residential building. The revenue model should derive from yearly contract revenue. The automated data management should allow to have a low annual fee (almost no variable cost) and the business development should come from volume. To get this volume in a reasonable time it is important to define the adequate distribution model.

Data Management

Collected data will be directed to already existing SCADA system (Ignition). This system allows data management, alarm algorithms and automated reporting.

Technical pre-requisites

  • A sample of 20 installations should be sufficient to get a fair approach to rated efficiency
  • The low cost kit should be composed of:
    • Gateway (Mbus or LoRawan)
    • Water meter with Mbus or LoRawan
    • Interface to solar control unit

Digital Onboarding for Small and Medium-Sized Companies: A Toolbox Approach

Requester: Berner Fachhochschule (BFH)

In today’s rapidly evolving business landscape, the onboarding process has emerged as a crucial aspect of organizational success. With the advent of remote work and virtual teams, new challenges have arisen, necessitating the development of structured onboarding processes that incorporate digital tools. However, the integration of analog and digital tools to effectively assimilate new hires remains a persistent challenge for organizations. With our work we want explore the significance of onboarding in SME, elucidate the challenges posed by remote work, and propose potential strategies for integrating analog and digital tools in the onboarding process.

Effective onboarding of new hires has long been recognized as a critical factor in organizational success. It ensures a smooth transition for new employees and facilitates their assimilation into the organizational culture and workflow. However, with the paradigm shift towards remote work and virtual teams, the traditional onboarding process has encountered new hurdles, necessitating the adoption of novel strategies and digital tools. New work arrangements offer flexibility and access to talent pools beyond geographical boundaries. However, they also present unique challenges in terms of team collaboration, communication, and fostering a sense of belonging. Addressing these challenges requires a reimagining of the onboarding process.

Leveraging digital technologies for employee onboarding creates complexities that differ from traditional in-person onboarding. The absence of physical presence makes it challenging to establish personal connections (commitment and organizational citizenship behaviour) and convey the organizational culture effectively. Additionally, the reliance on digital communication platforms raises concerns about information overload, misinterpretation, and reduced non-verbal cues. Consequently, organizations must adapt their onboarding processes to ensure remote hires receive adequate support and integration. When adequately orchestrated and integrated in organizational processes, virtual meeting platforms, collaborative software, and knowledge-sharing tools provide avenues for effective communication, training, and engagement. By leveraging these tools, organizations can create interactive and immersive experiences that simulate in-person interactions, fostering stronger connections and facilitating the assimilation of new hires.

However, to bridge the analog-digital divide, organizations must carefully blend both types of tools in their onboarding processes. A hybrid approach can leverage the benefits of face-to-face interactions while harnessing the efficiency and accessibility of digital tools.

The challenges posed by the combination of analog and digital tools necessitate innovative strategies. By implementing a structured onboarding process that incorporates digital tools effectively, organizations can foster a sense of connection, enhance employee engagement, and lay the foundation for long-term success in a digital-first era.

The project aims to develop a toolbox of digital solutions in order to empower SMEs to effectively integrate new hires. Through empirical research and a focus on specific SME needs, this study seeks to enhance the onboarding experience and promote organizational success.

In order to carry out the project in a practical manner, continuous collaboration with potential industry partners is essential. This collaboration allows for the identification of pain points and the gathering of valuable insights from previous experiences. By engaging in this exchange, targeted research can be conducted, leading to the development of practical and feasible solutions.

In a first step, we are actively seeking companies interested in participating in a shaping workshop to share their knowledge and insights regarding the use of digital tools in the onboarding processes. This workshop will provide an opportunity for participants to discuss the challenges they face and generate initial ideas on how to effectively address these challenges. We encourage companies to join us in this collaborative session to foster knowledge sharing and collectively enhance the onboarding experience.

In a second step, we are looking for firms as implementation partners to co-develop initial concepts and possibly prototypes. Firms could be specialized in HR, or HR consulting, or providing systems/development to support HR processes.

Improving behavior in front of screen using AI

Requester
Intelec Artificial Intelligence GmbH (Intelec AI)

Idea description
We all spend more and more time in front of screens. Sitting in front of the screen in the correct position and keeping minimum distance between your eyes and screen are crucial in staying healthy and avoiding developing short-sightedness. The problem is that a lot of people, especially children, don’t follow these rules.

We propose developing a software, which observes our sitting position and distance from the screen using an on-screen camera and notifies us if we do it wrong. This way the technology can help us build good screen habits and protect our health.

We are looking for a partner who can collaborate with us to build an app for testing the above idea. Ideally, the partner can work on developing an android mobile application (user interface) and Intelec AI can develop the image analysis part of the app.

Main challenges are:

  • running a background app with “always on” camera which consumes as little energy as possible
  • respecting user privacy
  • the app should work for users of different age, race, and gender
  • the app should work for wide variety of cameras and lighting conditions

Requested Support
We are looking for research partners who have experience around the challenges listed above and are interested in implementing them. This also includes the possibility to post theses at MSc level in this regard.

TalkDoc: the AI-Powered Documentation (by Cross-ING)

Idea description
In today’s fast-paced business world, efficient documentation is key to maintaining a competitive edge. Our
idea is to develop TalkDoc, an AI-powered documentation assistant that streamlines the creation, organization, and management of a company’s internal and external documents. We envision a cutting-edge Large Language Model (LLM) that is fine-tuned on a company’s specific documentation and hosted locally to ensure security and data privacy.

Features
1. Tailor made: fine-tuned to company’s specific documentation needs, ensuring relevant and accurate content generation
2. Secure: hosted locally and offline, unparalleled data security and privacy
3. Versatile: with different access levels, utilized by employees as a documentation assistant and externally as a chatbot for customers
4. Comprehensive: all aspects of documentation covered, from internal and external documents to product guides and user support

Technical details
The system would offer three main categories of documentation assistance:

• Internal Documents: simplified creation and management of internal documents such as operating
agreements, non-disclosure agreements, employment contracts, business reports, financial records, minutes for business meetings, business plans, compliance and regulatory documents, and internal product documentation.
• External Documents: simplified external documentation process, which covers business proposals, contracts with vendors and customers, and transactional documents.
• Products: improved product documentation with AI generated user guides, instruction manuals, troubleshooting guides, SDKs, feature documentation, and FAQs.

TalkDoc’s modular architecture would allow for seamless integration into the existing systems and support for a wide range of formats, ensuring compatibility with the current documentation tools. Employees could leverage the AI assistant to draft, edit, and collaborate on documents, while the external-facing chatbot would provide real-time support to customers and users. With different access levels, TalkDoc will be a versatile tool for employees, as well as a customer-facing chatbot. TalkDoc’s AI-driven technology would empower companies to streamline their documentation processes, reducing errors, and fostering collaboration so to minimize hours spent on drafting, organizing, and managing business documentation.

Requested Support
We, Cross-ING, are looking for a research and development-friendly environment with access to resources and networking opportunities. We seek partners for the entire product development life cycle, from conceptualisation and prototyping to testing and validation. We also aim to expand the team and create strategic partnerships for long-term growth.

Smart Platform for Earth Observation Data Search & Use

Requester: University of Zurich (incl. extended consortium of industry and research)

The availability and quality of satellite data have strongly increased in recent years. However, this diversity of data also makes it difficult to maintain an overview of current developments. This applies to finding the most suitable data for specific questions, data handling (from data access, management and processing to evaluation and visualization towards interpretation), and the critical reflection on the validity and quality of the available derived information. Especially outside of research, extensive expertise is required for this, which is only available to a limited extent depending on the organization.

The idea presented here is to implement a platform that combines the following modules:

(i) an extensive database of (freely) available Earth observation data and products (e.g., from satellites, via
Copernicus or Open Data sources).

(ii) a comprehensive characterization of the data in terms of data specifications (format, etc.) and potential
data applications (i.e., labelling application areas/product properties, etc.)

iii) a harmonization of the data with respect to data format/type, geometry, metadata

iv) a flexible, self-optimizing search engine based on current developments in NLP (i.e., considering
context/semantics understanding etc)

v) intuitive and standardized interfaces for data access and sharing.

The goal is to allow people without prior knowledge or expertise in satellite missions and sensors to access and use this data. Examples would include information on pollution or natural hazard, long-term statistics based on satellite data on the effects of climate change and biodiversity decline, or visualization of land cover and land use in near real time.

Objectives

  • Development of a database management system for linking a wide variety of data formats including metadata.
  • Semi-automatic processes for thematic labelling of EO data.
  • Development of business model ideas and their implementation.

Whom are we looking for?

  • Organizations/users interested in using/implementing the platform.
  • Organizations contributing to the data base.
  • Organizations/users using the data outcome.

Leveraging the power of open source to boost the usability of product data in the construction industry

Goal

The ultimate goal of the OpenMaterialData project is to enable all stakeholders in the construction industry to perform their workflows on the same product specific datasets, regardless of which software tools they use. 

This results in significant benefits that are critical to a greener and more productive construction industry. Firstly, evaluating and comparing a much broader range of materials / products becomes significantly easier through holistic filtering (quality, performance, sustainability, cost), especially for less experienced stakeholders. Secondly, transparency increases. Among other things, the impact of a material on the performance of a building can be much better visualized, innovative products can enter the market more easily and assessing the circularity index of a building becomes much simpler. Thirdly, manual labor and inaccuracies in planning are drastically reduced based on digital, user centric services, which directly addresses the shortage of experts.

 

Problem

The OpenMaterialData project addresses the lack of usability of product data for software tools in the construction industry – an issue that is central to both the acceleration of digitization and the sustainability of the sector. As of today, every stakeholder – from architects, engineers, sustainability experts to buyers – compiles product related data from individual sources, which not only creates a lot of manual labor but also inaccuracies and intransparency. 

Although demand from data consumers is high, existing initiatives are currently not capable of delivering the required holistic data sets. In general, these initiatives face two main problems. Firstly, proprietary databases usually charge manufacturers for onboarding their data and exposing it through their channels to potential customers. This approach has its limitations, as it is not possible for every initiative to reach an agreement with all manufacturers. Secondly, the data delivered by the manufacturers lacks quality. Since no standard to document product data has been established broadly, the data delivered by the manufacturers is often not consistent in itself and not comparable from one to another source. Mapping and validating therefore becomes quite an effort, which makes the business model of being a proprietary “data collector” difficult. As a result, most of the data that is reliably available through an API is data from public EPD databases. These data sets do not contain any further information about the mechanical and physical properties of the product – which is a critical shortcoming.  

 

Technically, the biggest challenge is to make unstructured data queryable. While this is a known problem in many other industries, the specific conditions in the construction industry are different. Firstly, the number of products (per country) to begin with can be relatively small. By focusing first on the materials/products that are most important to a building’s energy performance and environmental footprint, and excluding others such as fixtures, building services, and appliances, the number of products that must be considered to add immediate value is manageable. Secondly, the need for improvement is great. There is pressure both on the part of building owners, who need a better understanding of a building’s emissions to achieve their sustainability goals, and on the part of designers and contractors, who want to reduce the enormous amount of work involved in finding the most suitable materials. 

 

Solution

By leveraging the power of the open source movement, the OpenMaterialData project offers a fundamentally new approach. Provided with access to tools for crawling data as well as for maintaining and enriching datasets (think a google like search engine approach), an API to search and find data and additionally a platform to communicate about product but also data quality (think reddit), committed members of the community across manufacturers, owners, planners and contractors can work together to make product data available in a digital, very need driven way. 

The intended workflow is as follows: 

In the first step, data is pulled / indexed from different sources and different formats. 

In the second step, the resulting meta data needs to be validated, linked and/or enriched. 

For the third step, an API must be provided that gives different tools access to the indexed data. 

Business Case

The organization that sets up the technical infrastructure, maintains it and offers support to the community must be non-profit and independent. It can be very lean, mostly driven by volunteers and will be funded by government fundings, sponsors from the industry who a) need access to the data and b) want to support the transformation towards a more digital and sustainable industry and voluntary membership fees.

All activities focus on the goal to index as much data as possible. While the initial setup requires one-time investments, the effort will be significantly reduced once the initiative triggers a kind of pull effect comparable to SEO – this will lead to increased adoption of some standards by manufacturers and thus reduce the mapping effort soon.

Once up and running, the non-profit organization can create additional earnings e.g. by offering additional, fee required services that helps manufacturers to onboard their data or run ads on the communication platform to eliminate the need for external sponsoring. 

In macroeconomic terms, the OpenMaterialData project will be the basis for a whole range of innovative services that will fundamentally change the way information about materials and products in construction projects is collected and shared digitally. Therefore, the project is not a competition for existing initiatives but an enabler that can lift them on a new level.

Requested support

While we have broad support from potential data consumers (owners, planners, software developers), we still need to work out the technical framework.

We are looking for experts with experience in

  • search on unstructured, distributed data (small data),
  • diverse data formats and storages,
  • data enrichment,
  • and databases