Goal
The ultimate goal of the OpenMaterialData project is to enable all stakeholders in the construction industry to perform their workflows on the same product specific datasets, regardless of which software tools they use.
This results in significant benefits that are critical to a greener and more productive construction industry. Firstly, evaluating and comparing a much broader range of materials / products becomes significantly easier through holistic filtering (quality, performance, sustainability, cost), especially for less experienced stakeholders. Secondly, transparency increases. Among other things, the impact of a material on the performance of a building can be much better visualized, innovative products can enter the market more easily and assessing the circularity index of a building becomes much simpler. Thirdly, manual labor and inaccuracies in planning are drastically reduced based on digital, user centric services, which directly addresses the shortage of experts.
Problem
The OpenMaterialData project addresses the lack of usability of product data for software tools in the construction industry – an issue that is central to both the acceleration of digitization and the sustainability of the sector. As of today, every stakeholder – from architects, engineers, sustainability experts to buyers – compiles product related data from individual sources, which not only creates a lot of manual labor but also inaccuracies and intransparency.
Although demand from data consumers is high, existing initiatives are currently not capable of delivering the required holistic data sets. In general, these initiatives face two main problems. Firstly, proprietary databases usually charge manufacturers for onboarding their data and exposing it through their channels to potential customers. This approach has its limitations, as it is not possible for every initiative to reach an agreement with all manufacturers. Secondly, the data delivered by the manufacturers lacks quality. Since no standard to document product data has been established broadly, the data delivered by the manufacturers is often not consistent in itself and not comparable from one to another source. Mapping and validating therefore becomes quite an effort, which makes the business model of being a proprietary “data collector” difficult. As a result, most of the data that is reliably available through an API is data from public EPD databases. These data sets do not contain any further information about the mechanical and physical properties of the product – which is a critical shortcoming.
Technically, the biggest challenge is to make unstructured data queryable. While this is a known problem in many other industries, the specific conditions in the construction industry are different. Firstly, the number of products (per country) to begin with can be relatively small. By focusing first on the materials/products that are most important to a building’s energy performance and environmental footprint, and excluding others such as fixtures, building services, and appliances, the number of products that must be considered to add immediate value is manageable. Secondly, the need for improvement is great. There is pressure both on the part of building owners, who need a better understanding of a building’s emissions to achieve their sustainability goals, and on the part of designers and contractors, who want to reduce the enormous amount of work involved in finding the most suitable materials.
Solution
By leveraging the power of the open source movement, the OpenMaterialData project offers a fundamentally new approach. Provided with access to tools for crawling data as well as for maintaining and enriching datasets (think a google like search engine approach), an API to search and find data and additionally a platform to communicate about product but also data quality (think reddit), committed members of the community across manufacturers, owners, planners and contractors can work together to make product data available in a digital, very need driven way.
The intended workflow is as follows:
In the first step, data is pulled / indexed from different sources and different formats.
In the second step, the resulting meta data needs to be validated, linked and/or enriched.
For the third step, an API must be provided that gives different tools access to the indexed data.
Business Case
The organization that sets up the technical infrastructure, maintains it and offers support to the community must be non-profit and independent. It can be very lean, mostly driven by volunteers and will be funded by government fundings, sponsors from the industry who a) need access to the data and b) want to support the transformation towards a more digital and sustainable industry and voluntary membership fees.
All activities focus on the goal to index as much data as possible. While the initial setup requires one-time investments, the effort will be significantly reduced once the initiative triggers a kind of pull effect comparable to SEO – this will lead to increased adoption of some standards by manufacturers and thus reduce the mapping effort soon.
Once up and running, the non-profit organization can create additional earnings e.g. by offering additional, fee required services that helps manufacturers to onboard their data or run ads on the communication platform to eliminate the need for external sponsoring.
In macroeconomic terms, the OpenMaterialData project will be the basis for a whole range of innovative services that will fundamentally change the way information about materials and products in construction projects is collected and shared digitally. Therefore, the project is not a competition for existing initiatives but an enabler that can lift them on a new level.
Requested support
While we have broad support from potential data consumers (owners, planners, software developers), we still need to work out the technical framework.
We are looking for experts with experience in
- search on unstructured, distributed data (small data),
- diverse data formats and storages,
- data enrichment,
- and databases