By Nicolas Lenz, Xurce and Gundula Heinatz Bürki, data innovation alliance
The Alliance’s commitment is manifold. The network is not only committed to professional exchange, but also wants to contribute to social challenges.
Society is changing, and in recent years the labor market has been shaken up considerably. The need for new work models, more home office and a generally improved work-life balance are sprouting up.
After an introduction of Priska Burkard from techface about facts and figures to the actual situation of women in tech force we discussed the challenges and first ideas about possible solutions.
A workshop dedicated to these topics led to surprising results!
Employers have adapted to the new circumstances and offer (from their point of view) flexible working conditions.
However, many of them fail to make the working conditions visible to the outside.
In daily business, the working conditions are not lived, promises are too often broken.
The needs of the employees often do not coincide with the offers of the employers.
In a typical organization, people with different needs work together. This also means (from the employees’ point of view) that they do not all need the same working conditions.
We consider it important to further deepen these discussions. The next step is to find the right form of discussions and then produce a tangible output.
By Focus Topic Leads Industry 4.0: Patricia Deflorin, FHGR, Philipp Schmid, CSEM and Philipp Hauri, Industrie 2025
Research meets Industry – from ideas to business cases.
In the knowledge that networking and cooperation with universities is an important success factor for the innovation activities of companies, Industrie 2025 initialized the “R&D Conferences on Industry 4.0”.
In these conferences, you will get an overview of the topics of the near future in an efficient way and get insights what is being researched and developed at universities and universities of applied sciences in the field of Industry 4.0.On the 24th of January, they invited for the 8th R&D Conference on Industry 4.0, which was hosted by HSLU (Lucerne University of Applied Sciences and Arts) in the city of Rotkreuz. After the welcome by Philip Hauri (Industrie 2025) and an inspiring keynote from Stephan Keller (V-Zug, HSLU), 23 university projects linked to emerging topics in the fields of Artificial Intelligence, Smart Factory, or Digital Twin were presented.
In this context, Sybille Aeschbacher from Innosuisse presented, how knowledge transfer from universities to industry can be promoted and what tools are available in Switzerland for this purpose – where of course the Innobooster Databooster is part of it. Next to the talks, a poster exhibition gave the participants the opportunity to get in direct contact with the speakers and learn more about the projects presented.
The conference convinced with the knowledge and innovative spirit among the speakers and participants and how the intensive exchange between research and industry was noticeable during the whole time. And in the end, it has once again become clear that rapid technological developments only develop their full potential when the corresponding business cases are in place.
“Innovation is going beyond state of the art – which means risk” – Anton Demarmels, Swissmem
“Innovation heisst, die Grenzen des State of the Art zu überschreiten – und das bedeutet Risiko” – Anton Demarmels, Swissmem.
The well-known song, 12 Days of Christmas, is heard around this time of year, just as we at the Databooster were “gifted” 12 idea talks at the every first Project Day and Christmas Lounge event. The Databooster ideas were in various phases of development across the data clusters “Industry 4.0”, “Smart Services”, “Ethics”, and “Sustainability”.
Das bekannte Lied “12 Days of Christmas” hört man um diese Jahreszeit, und auch wir beim Databooster wurden am ersten Project Day und der Weihnachtslounge mit 12 Ideenvorträgen “beschenkt”. Die Databooster-Ideen befinden sich in verschiedenen Phasen der Entwicklung in den Datenclustern “Industrie 4.0”, “Smart Services”, “Ethik” und “Nachhaltigkeit”.
What set this event apart from usual success stories was the melting pot of – at first glance – bizarre but brilliant future innovation ideas generated during several rounds of breakout sessions. Sure, data can be used for predictive maintenance on infrastructure, and sensors could detect changes in living organisms such as plants. But what happens if we let the boundaries of normal brainstorming fall away to broaden the group idea horizon? Imagine a technology that would allow sustainable, plant-based or wooden infrastructure, such as bridges, to be built, which would employ drones to survey potential maintenance spots, fire off a signal to the relevant sensors, and the plant-based infrastructure could regrow those areas of concern.
Was diese Veranstaltung von den üblichen Erfolgsgeschichten abhebt, war der bunte Mix aus – auf den ersten Blick – skurrilen, aber spannenden Ideen für Zukunftsszenarien, die in mehreren Runden von Breakout Diskussionen entwickelt wurden. Klar, Daten können für die vorausschauende Wartung von Infrastrukturen genutzt werden, und Sensoren könnten Veränderungen in lebenden Organismen wie Pflanzen erkennen. Aber was passiert, wenn wir die Grenzen des normalen Brainstormings ausdehnen, um den Ideen-Horizont der Gruppe zu erweitern? Stellen Sie sich eine Technologie vor, die den Bau nachhaltiger, pflanzlicher oder hölzerner Infrastrukturen wie z. B. Brücken ermöglicht, bei der Drohnen eingesetzt werden, um potenzielle Wartungsstellen zu überwachen sowie Signale an die entsprechenden Sensoren zu senden, so dass die pflanzliche Infrastruktur die betreffenden Bereiche regenerieren könnte.
Why bother generating such wild ideas across separate industries? Because innovation can’t happen without bold steps. And bold, risk-oriented action can’t happen with a limiting mindset or an isolated environment. The Databooster puts the right people together to enable limits to fall away, ideas to be tested, pushed, and refined into tangible innovation.
Warum macht man sich die Arbeit, solch wilde Ideen quer durch verschiedene Branchen zu kreieren? Weil es ohne wagemutige Schritte keine Innovation geben kann. Und kühnes, risikokalkuliertes Handeln kann nicht mit einer einschränkenden Denkweise oder einer isolierten Umgebung geschehen. Der Databooster bringt die richtigen Leute zusammen, damit Grenzen wegfallen und Ideen getestet, vorangetrieben und zu greifbaren Innovationen weiterentwickelt werden können.
A painting is made up of both broader as well as finer brush strokes. Likewise, gaining an insider’s perspective on the broad range of stages in the ideas’ development enabled the participants to see the bigger picture of the Databooster program – with stumbling blocks experienced and successes celebrated.
Ein Gemälde ist ein Werk, das sowohl aus breiteren als auch aus feineren Pinselstrichen besteht. Genauso ermöglichte die Insider-Perspektive auf das breite Band der Ideen-Entwicklungsphasen den Teilnehmern, das Gesamtbild des Databooster-Programms zu erkennen – samt erlebten Stolpersteinen und gefeierten Erfolgen.
Let’s get into the specific talks.
Ideas such as “Predictive Maintenance for wind machines” by SSM Schärer Schweiter AG and “Cavity pressure-based machine learning for advanced injection molding processes” by Kistler Group have already conducted Deep Dives and evaluated their data. SSM found that their data does not yet allow for any conclusions to be drawn about future failures, so they must explore further avenues. URMA AG Tools and Machining have also already dug extensively into their idea; collected, evaluated and gained insights from initial data gathered.
Kommen wir nun zu den einzelnen Vorträgen.
Ideen wie das Thema “Predictive Maintenance for wind machines” der SSM Schärer Schweiter AG und “Cavity pressure-based machine learning for advanced injection molding processes” der Kistler Gruppe haben bereits Deep Dives durchgeführt und ihre Daten ausgewertet. SSM hat festgestellt, dass ihre Daten noch keine Aussagen über zukünftige Ausfälle zulassen, weshalb sie weitere Ansätze untersuchen müssen. Auch die URMA AG Tools and Machining hat sich bereits intensiv mit ihrer Idee auseinandergesetzt, erste Daten gesammelt und ausgewertet. Sie konnten bereits daraus Erkenntnisse gewinnen.
Certain ideas are at the stage where the technological feasibility is investigated and the data models to be used are being researched. One of the start-ups, Vivent, talked about a plant stress algorithm and sensors that would read the electric radiation emitted from plants to detect the stress situation of the plants, e.g. even in mild droughts, to alert commercial farmers. Such projects are particularly exciting, as they have great innovation potential due to the research still being conducted.
Einige Ideen befinden sich in der Phase, in der die technologische Machbarkeit untersucht wird und die zu verwendenden Datenmodelle erforscht werden. Eines der Start-ups, Vivent, sprach über einen Algorithmus zur Erkennung von Pflanzenstress und Sensoren, die die von den Pflanzen abgegebene elektrische Strahlung messen könnten, um die Stresssituation der Pflanzen zu erkennen, z.B. bereits bei milden Dürreperioden, um Landwirte zu warnen. Solche Projekte sind besonders spannend, da sie aufgrund der noch laufenden Forschung ein hohes Mass an Innovationspotenzial haben.
Lastly, there were early-stage idea stories by Swiss Re and Thinkgate, currently in the Databooster Shaping Stage. They mapped out the stakeholder’s and customers’ needs and laid out exactly how their data-based innovation projects bridge them. The overviews respectively included automating benefit identification in insurance, and centralizing data on flight irregularities and mitigating services thereof on a platform for consumer convenience.
Schliesslich gab es noch Ideengeschichten von Swiss Re und Thinkgate, die sich derzeit in der Databooster Shaping Stage befinden. Sie erarbeiteten die Bedürfnisse der Stakeholder und Kunden und schilderten konkret, wie ihre datenbasierten Innovationsvorhaben diese überbrücken. Zu den jeweiligen Ideen gehörten die Automatisierung der Leistungsidentifizierung in der Versicherungsbranche und die Zentralisierung von Daten über Flugunregelmässigkeiten und deren Abhilfe in einer Plattform, um den Verbrauchern die Neu-Orientierung zu erleichtern.
The festive apèro, dotted with fine Christmas “Guetzli”, led to the participants mingling, exchanging their impressions, and gave rise to the opportunity for further synergies. The event closed with feedback from the participants.
Der festliche Apéro, bestückt mit feinen Weihnachtsguetzli, bot den Teilnehmerinnen und Teilnehmern die Möglichkeit, sich zu begegnen, ihre Eindrücke auszutauschen und weitere Synergien zu knüpfen. Die Veranstaltung schloss mit einem Feedback der Teilnehmer.
“The Databooster builds a platform to guarantee exchanges.”“One always sees the same ideas being presented – except here! It’s astounding how unusual some of the innovation ideas across the panel were.”“It’s interesting how the applications proceeded in how they are able to move ideas forward across such a variety of industries. Coming to this event, one truly sees that there’s a real community to help you”.
“Der Databooster baut eine Plattform, um den Austausch zu garantieren.””Man bekommt immer die ähnlichen Ideen präsentiert – ausser hier! Es ist beeindruckend, wie originell einige der Innovationsideen im gesamten Forum waren.””Es ist spannend, wie die Bewerbungen verlaufen sind, wie sie Ideen in so unterschiedlichen Branchen vorantreiben können. Bei dieser Veranstaltung sieht man, dass es eine echte Gemeinschaft gibt, die einen unterstützt”.
Thank you to the participants for their active engagement! Missed out? Don’t worry, we are hosting the next Project Day on April 18, 2023!
Vielen Dank an die Teilnehmer für ihr aktives Engagement! Sie haben es verpasst? Keine Sorge, wir laden Sie herzliche zum nächsten Projekttag am 18. April 2023 ein!
Successful Databooster presentations at the “smart maintenance insights” conference
On November 23, the “smart maintenance insights” conference was held in collaboration with easyfair. The Databooster framed the event with presentations by Andrew Paice and Jürg Meierhofer, who highlighted the focus topic “Dilemma between value creation and value destruction with data”.
Andrew Paice opened the presentation series with the topic “What data is enough for smart maintenance?”. The presentation started from the common view that data is seen as a panacea – “If I have enough data, I can do anything with machine learning – e.g. smart maintenance”. He outlined that, in contrast, more information does not necessarily lead to better decisions. These issues are particularly pressing in maintenance, where you really need the right data to make good decisions. How do you know if you have the right data or enough data? In the presentation, the use of machine learning was discussed and explained with examples from research.
After two very interesting industrial contributions by Thomas Faulhaber from Membrain Switzerland and Dominik Doubek from Sonic Technology AG, Jürg Meierhofer closed the arc with his presentation “How do Smart Service create sustainable value?”. Even if sufficient data of good quality is available, business-relevant value is not automatically created for the economic actors. When using so-called smart services (data-driven services), the goal must be to increase performance and reduce risks for the diverse actors in an ecosystem. In addition, smart services allow providers to differentiate themselves and strengthen customer relationships. Thus, the use of data for novel services has great strategic importance. However, without knowing the value of their data, it is difficult for companies to make the decision for the potentially large investments in its collection and processing. The presentations are available on youtube: https://www.youtube.com/watch?v=Sh7VxTTFpYY&t=10s
Dilemma zwischen Wertschöpfung und Wertzerstörung mit Daten
Von Jürg Meierhofer, ZHAW
Erfolgreiche Databooster Präsentationen an der Konferenz “smart maintenance insights”
Am 23. November fand in Zusammenarbeit mit easyfair die “smart maintenance insights” Konferenz statt. Der Databooster umrahmte den Anlasse mit Präsentationen von Andrew Paice und Jürg Meierhofer, welche das Fokusthema “Dilemma zwischen Wertschöpfung und Wertzerstörung mit Daten” beleuchteten.
Andrew Paice eröffnete die Vortragsreihe mit dem Thema “Welche Daten reichen für smart maintenance?”. Das Referat ging aus von der verbreiteten Ansicht, dass Daten als Allheilmittel angesehen werden – “Wenn ich genug Daten habe, kann ich mit Machine Learning alles machen – zB Smart Maintenance”. Er legte dar, dass hingegen mehr Informationen nicht unbedingt zu besseren Entscheidungen führen. Diese Fragen sind besonders dringlich in der Instandhaltung, wo man wirklich die richtigen Daten braucht, um gute Entscheidungen zu treffen. Wie weiss man ob die richtigen oder genügend Daten hat? Im Vortrag wurde der Einsatz von maschinellem Lernen diskutiert und anhand von Beispielen aus der Forschung erläutert.
Nach zwei sehr interessanten Praxisbeiträgen von Thomas Faulhaber von Membrain Switzerland und Dominik Doubek von Sonic Technology AG schloss Jürg Meierhofer den Bogen mit seinem Referat “Wie schaffen Smart Service nachhaltig Wert?”. Auch wenn genügend Daten in guter Qualität vorliegen, entsteht nicht automatisch Business-relevanter Wert für die wirtschaftlichen Akteure. Beim Einsatz sogenannter smart Services (Daten-getriebener Dienstleistungen) muss das Ziel darin bestehen, für die diversen Akteure in einem Ecosystem die Leistung zu steigern und die Risiken zu reduzieren. Zudem können sich die Anbieter mit smart Services differenzieren und die Kundenbeziehung stärken. Die Nutzung von Daten für neuartige Services hat somit grosse strategische Bedeutung. Ohne den Wert ihrer Daten zu kennen, ist es für die Unternehmen aber schwierig, den Entscheid für die potenziell hohen Investitionen in deren Erhebung und Verarbeitung zu treffen.
By Nicolas Lenz, Litix, Stefan Keller, OST, and Reik Leiterer, ExoLabs
The Expert Group Spatial Data Analytics used the 2022 General Assembly of the Data Innovation Alliance in Zurich to organise an expert meet up beforehand – and 18 experts from research and industry took the opportunity and participated in the event. The aim of this event was, on the one hand, to identify topics of particular interest for the spatial data community, which will then be taken up at special events in 2023. On the other hand, current trends in the field of geodata and applications/solutions related to geodata were presented and discussed. The meeting was concluded with the presentation of exciting data sets and tools that are of great importance in the current work of the participants.
In the area of trends, possible thematic clusters of particular interest were outlined, developments in methodological approaches were presented and new approaches to solutions and applications were discussed.
In the context of the UN’s Sustainable Development Goals (SDGs), the Disaster Mitigation and Response theme complex stands out – themes, that are also of central importance in Switzerland and where geodata and their use/analysis are key to protecting the environment, infrastructure, and the population. This is linked to the wide field of Location Intelligence, e.g., visualizing (You all know heat maps, don’t you?) and analysing volumes of spatial data (often linked with non-spatial data), to enable holistic planning, insights for problem-solving, and advanced spatio-temporal forecasting.
Regarding data acquisition and evaluation, many new sensors, algorithms, and software packages are currently being developed in the field of 3D representation. This applies not only to the functionalities in existing solutions (e.g., 3D-GIS), but also to the linking of spatially explicit information with, e.g., the classic 3D model approaches in infrastructure planning (BIM) – with which we have gained another concept in the spatial universe: GeoBIM.
A lot of data means new possible approaches – and more and more use is being made of Machine Learning (ML) methods. But ML has very specific requirements for the data to unfold its full potential. One way to meet these requirements is to generate so-called Synthetic Data. This can not only help with an insufficient data basis, but also anonymise data in such a way that an exchange beyond the boundaries of one’s own organisational unit is possible even when working with sensitive information.
Also very exciting are the developments around SaaS applications and No-Code platforms, which will certainly lead to a strong increase in the use of spatial data. With the Metaverse, an additional field of development has opened in the last few months, which enables the spatialisation and visualization of our online activities. Hype, bubble, or opportunity – we will see.
New ideas, research projects and exciting applications were discussed in the subsequent exchange session: from the data pooling of freely available data (by Nicolas Lenz – Litix) and the integration of cloud computing services into locally running applications (by Dominique Weber – WSL), via interactive platforms for the joint work on requirements relating to the development/planning of spatial systems (Luis Gisler – cividi), to the power of customized machine learning tools in applied research (by László István Etesi – FHNW/ATELERIS). At this point, thanks to the presenters for the exciting insight!
You missed the Expert Day? – Don’t worry, there will be another one next year, along with several other exciting events on the topic of Spatial Data Analytics. Simply visit the website – and join the meet-ups where you can exchange ideas and initiate new collaborations with experts from research and industry. We are looking forward to you!
Since it’s origin in 2018, the Smart Services Summit has created a lively and relevant community of practitioners and researchers, with a relevant focus topic every year. Several implementation projects and other value creating initiatives emerged from this network.
On October 21, we got together for the 5th time to join industrial and academic experts to share ideas, this time with the focus topic „smart services creating sustainability“. The summit was hosted by Oracle at their excellent location in the Circle convention center at airport Zurich. We had a rich and extensive conference program and were able to establish excellent new contacts for future co-creation.
We will take this on to the 6th edition in 2023. The relevant topics are far from being exhausted, indeed they never run out, as in a dynamically changing context new opportunities and also urgent needs for the generation of benefits with smart service-oriented approaches are constantly arising.
By Jürg Meierhofer, ZHAW, and Philipp Schmid, CSEM
Almost 30 attendees actively participated at the workshop “Data Driven Innovation”. After an insightful introduction to the promising transition from predictive management to predictive quality by Philipp Schmid, Jürg Meierhofer gave insights into approaches for economic value creation. Upon this, the attendees gathered in small breakout groups and elaborated the data driven value creation patterns at their own case study examples. Some very interesting project ideas which could be further followed came out of this workshop. The databooster process provides a very helpful platform for further developing these ideas into implementation projects.
In the late afternoon of September 27, 2022, the Expert Group Smart Services gathered at ZHAW in Zürich. We enjoyed a presentation by Shaun West about the topic “Contracts for Advanced Services”.
Shaun West provided hints and tips on how to design and deliver advanced services based on expert know how and best practice. This is relevant for firms who are integrating digital with their traditional product and service offerings.
When selling advanced services, the conceptual and contractual complexities of such contracts are all too often underestimated. Experience shows that this is especially true when selling into traditional B2B markets. The developing and longer-term nature of advanced services and the need for collaboration between seller and buyer should be reflected in the contract. For example, the traditional approach of using ‘specification and data sheets within specified operating parameters’ for service contracts will need to be replaced with contractual structures reflecting the dynamic, evolving nature of advanced service contracts.
This creates challenges for both sellers and buyers of advanced services: traditional mind-sets must be overcome, high-level advanced services outcomes / measures have to be agreed, flexible / adaptable contractual framework should be developed, and collaborative structures are required in the contracts.
Das Thema des 4. Digital Health Lab Days der ZHAW lautete: «Smart Healthcare & Digital Innovation». Über 200 Teilnehmer und Aussteller sind an diesem Montag in das historische Sulzerareal nach Winterthur gereist. Im Epizentrum des Maschinenbaus des letzten Jahrhunderts drehte sich heute für einmal alles um die Gesundheit und damit verbunden vor allem um Daten und Digitalisierung. Spannende Keynotes, 9 inspirierende Startup Pitches, 7 Smart Healthcare Workshops kombiniert mit Podiumsdiskussion und einer Posterausstellung – das Programm war vielseitig und spannend. Gerade im Digital Health Bereich stösst das Angebot des NTN Innovation Booster – Databooster auf grosses Interesse. Wir freuen uns auf viele neue Innovationsideen!
Data Science, machine learning, artificial intelligence etc. are hot topics and deserve undisputedly a lot of attention. However, we always need to pay attention to whether and how we create value for the diverse actors in the ecosystem. For businesses, this means of course primarily economic value, but by far not only. Data-driven solutions also need to address other value dimensions of individuals, e.g., social or emotional values. This discipline of “Smart Service Engineering” provides us with a set of tools and applicable procedures to achieve this. In the CAS Smart Service Engineering / Data Product Design, we work with these tools and directly apply them to case studies that are self-chosen by groups of participants.
Data Science, Machine Learning, Künstliche Intelligenz etc. sind hoch aktuelle Themen und verdienen unbestritten viel Aufmerksamkeit. Wir müssen jedoch immer darauf achten, ob und wie wir Wert für die verschiedenen Akteure im Ökosystem schaffen. Für Unternehmen bedeutet das natürlich in erster Linie betriebswirtschaftlichen Wert, aber bei weitem nicht nur. Datengetriebene Lösungen müssen auch andere Wertdimensionen von Individuen adressieren, z. B. soziale oder emotionale Werte. Die Disziplin des “Smart Service Engineerings” stellt uns dafür eine Reihe von Werkzeugen und direkt anwendbaren Methoden zur Verfügung. Im CAS Smart Service Engineering / Data Product Design arbeiten wir mit diesen Methoden und wenden sie direkt auf Fallstudien an, die von Teilnehmendengruppen selbst ausgewählt werden.
After three months of course, we had the wonderful opportunity to take our well-prepared case studies to the very inspiring environment of the castle of Thun, where we were made very welcome by our host Fabrizio Laneve, who is the lively and energetic manager of the Mobiliar Forum Thun. Brilliantly moderated by Ina Goller, the groups successfully further developed the value creation by their smart service concepts – with a strong focus on value creation in the ecosystem, considering all relevant actors. Thanks to these two consecutive days of workshop, accompanied by a nice dinner and an overnight stay in the castle, we not only brought our service concepts significantly further, but also learned a lot about methodology and additionally, very much strengthened our team spirit.
Nach drei Monaten hatten wir die wunderbare Gelegenheit, unsere gut aufbereiteten Fallstudien in die sehr inspirierende Umgebung des Schlosses Thun zu bringen, wo wir von unserem Gastgeber Fabrizio Laneve, dem sehr aktiven und inspirirenden Manager des Mobiliar Forums Thun, sehr herzliche empfangen wurden. Brillant moderiert von Ina Goller entwickelten die Gruppen die Wertschöpfung durch ihre Smart-Service-Konzepte erfolgreich weiter – mit einem starken Fokus auf die Wertschöpfung im Ökosystem unter Berücksichtigung aller relevanten Akteure. Dank dieser zwei aufeinanderfolgenden Workshop-Tage, begleitet von einem schönen Abendessen und einer Übernachtung im Schloss, haben wir nicht nur unsere Servicekonzepte deutlich weiterentwickelt, sondern auch viel über die Methodik gelernt und zusätzlich unseren Teamgeist deutlich gestärkt.
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional
Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.